AS WE ROUNDED THE CORNER INTO THE TWENTY- FIRST CENTURY, physicians and medical researchers took special note of the state of health and medical care in the United States and the industrialized world. Looking back over a century gone by, the comparisons of diseases are remarkable. In the early 1900s people primarily died of infectious diseases. The four leading causes of death in the U.S. back then were pneumonia, tuberculosis, diphtheria, and influenza, and people had a life expectancy of a little more than forty-three years. But thanks to the discovery of antibiotics and advances in their development during the second half of this century, deaths due to infectious diseases declined dramatically, even after the AIDS epidemic of the 1980s.-
As we move into the twenty-first century, we find people primarily suffering and dying from what are known as chronic degenerative diseases. These include coronary artery disease, cancer, stroke, diabetes, arthritis, macular degeneration, cataracts, Alzheimer’s dementia, Parkinson’s disease, multiple sclerosis, and rheumatoid arthritis.2The list goes on and on. Even though the average life expectancy in the United States has increased dramatically during this past century, our quality of life due to these chronic degenerative diseases has taken a major hit. We are essentially “living too short and dying too long,” as I heard expressed in a speech by Dr. Myron Wentz, a prominent immunologist and microbiologist. Dr. Wentz also helped me understand the serious danger of oxidative stress to our health and the importance of cellular nutrition.
Book Now… your free live demonstration Click here
Free Radicals….The War Within
Free radicals were first described in 1950 [1] and refer to highly unstable and reactive atoms or molecules, owing to unpaired electrons found in their outer orbit [2]. Reactive oxygen species (ROS) include reactive nonradical derivatives of oxygen in addition to oxygen-centered radicals [2]. Reactive species are produced not only by natural biological processes but are also generated in response to external stimuli, such as air pollution, ultraviolet (UV) radiation, infections, inflammation, heavy metals, cigarette smoking, drugs, strenuous exercise, and emotional stress [3,4].
Where do free radicals come from?
SIT BACK, CLOSE YOUR EYES FOR A MOMENT, AND FOCUS ON YOUR breathing. Relax your shoulders and breathe in as deeply as you can, and then slowly release the air from your lungs.
I like to imagine what is happening inside my body at a cellular level as oxygen enters through my nose and travels to my lungs. Life is an intricately woven miracle, evident in every breath. I fill my lungs with fresh air rich with oxygen. The molecules of oxygen then pass through the thin walls of the alveoli in the lungs into the blood that is passing by. Here it attaches itself to the hemoglobin in my blood, and my beating heart pumps this newly oxygenated blood back out to all parts of my body. The hemoglobin then releases the oxygen so it can enter the cells of my body, where it gives energy and life itself.
Within every cell in the body is a furnace called the mitochondria. Imagine yourself in front of a crackling, warm fire. It burns safely and quietly most of the time. But on occasion, out flies a cinder that lands on your carpet, burning a little hole in it. One cinder by itself does not pose much of a threat; but if this sparking and popping continues month after month, year after year, you will end up with a pretty ragged carpet in front of your fireplace.
Similarly, this microscopic organism, the mitochondria, within the cell reduces oxygen by the transfer of electrons to create energy into the form of ATP, and produces a by product of water. This process goes on without a hitch at least 98 percent of the time. But the full complement of four electrons needed to reduce oxygen to water does not always happen as planned and a “free radical” is produced.
The cinder from the fireplace represents a free radical, and the carpet represents your body. Whichever part of the body receives the most free radical damage is the first to wear out and potentially develop degenerative disease. If it is your eyes, you could develop macular degeneration or cataracts. If it is your blood vessels, you could have a heart attack or a stroke. If it is your joint space, you could develop arthritis. If it is your brain, you could develop Alzheimer’s or Parkinson’s disease. After the passing of time, our bodies can look just like the carpet in front of the fireplace: pretty ratty.
Even though oxygen is necessary for life itself, it is inherently dangerous for our existence. In the process of utilizing oxygen within your cells to create energy, you also create a by-product referred to as free radicals. Like an apple turns brown when exposed to air, our cells can “rust” when we breathe due to oxidative stress, a process caused by free radicals. Free radicals are unstable molecules that damage or “oxidize” cells throughout the body in a process called oxidative stress.
Free radicals are charged oxygen molecules that are missing at least one electron and desire to get an electron from the surrounding area. If it is not readily neutralized by an antioxidant, which has the ability to give this free radical the electron it desires, it can go on to create more volatile free radicals, damage the cell wall, vessel wall, proteins, fats, and even the DNA nucleus of the cell. Oxidative damage accumulates during the life cycle, and it plays a key role in the development of age-dependent diseases such as cancer, arthritis, brain disorders and other conditions (R).
What Is Oxidative Stress?
Oxidative stress occurs when the production of reactive oxygen is greater than the body’s ability to detoxify the reactive intermediates. This imbalance leads to oxidative damage to proteins, molecules, and genes within the body. Since the body is incapable of keeping up with the detoxification of the free radicals, the damage continues to spread.
- Reactive oxygen species (ROS) are produced by all vascular cell types, including endothelial, smooth muscle, and connective tissue cells, and can be formed by numerous enzymes (R).
- Oxidants are also generated by different types of radiation, with X-irradiation generating the hydroxyl radical (R, R2).
- Irradiation with ultraviolet light generates electronically excited states with the subsequent radical formation (R,R2).
- Ultrasound and microwave radiation can also generate reactive oxygen species (R).
- Metal-catalyzed reactions produce reactive oxidant species(R).
- They are present as pollutants in the atmosphere (R).
- ROS are produced by neutrophils and macrophages during inflammation (R).
- They are also by-products of mitochondria-catalyzed electron transport reactions and other mechanisms (R).
External Factors of Oxidative Stress
Free radicals occur naturally within the body, and for the most part, the body’s natural antioxidants can manage their detoxification. But, there are certain external factors that can trigger the production of these damaging free radicals. These factors include:
• Excessive exposure to UV rays
• Pollution
• Smoking
• Eating an unhealthy diet
• Excessive exercise
• Certain medications and/or treatments
Book Now… your free live demonstration Click here
What diseases are associated with oxidative stress?
Overproduction of free radicals can cause oxidative damage to biomolecules, (lipids, proteins, DNA), eventually leading to many chronic diseases such as atherosclerosis,cancer, diabetics, rheumatoid arthritis, post–ischemic perfusion injury, myocardial infarction, cardiovascular diseases, chronic inflammation, stroke …
As many as 200 human diseases have been associated with increased levels of oxidative stress (R).
Reactive oxygen species (ROS) influence many physiological processes including host defense and cellular signaling and their increased production through oxidative stress plays a role in many diseases (R).
These diseases include:
- Cancer (R).
- Vascular diseases (R).
- High cholesterol (R, R2).
- Hypertension (R, R2).
- Parkinson’s disease (R).
- Alzheimer’s disease (R).
- Diabetes (R).
- Kidney disease (R).
- Cardiac hypertrophy (R).
- Heart failure (R).
- Stroke (R).